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FINITE ELEMENT APPENDAGE EQUATIONS
FOR HYBRID COORDINATE DYNAMIC ANALYSISt

PETER W. LIKINst

University of California, Los Angeles, California 90024

Abstract-The increasingly common practice of idealizing a spacecraft as a collection of interconnected rigid
bodies to some of which are attached linearly elastic flexible appendages leads to equations of motion expressed
in terms of a combination of discrete coordinates describing the arbitrary rotational motions of the rigid bodies
and distributed or modal coordinates describing the small, time-varying deformations of the appendages; such
a formulation is said to employ a hybrid system of coordinates. In the present paper the existing literature is
extended to provide hybrid coordinate equations of motion for a finite element model of a flexible appendage
attached to a rigid base undergoing unrestricted motions and some of the advantages of the finite element approach
are noted. Transformations to the modal coordinates appropriate for the general case are provided.

NOTATION

Latin symbols
A, A inertial acceleration of element field point p, vector and (3 x 1) matrix in basis Ie}, respectively
Aj inertial acceleration of node j
s1 (I2n x I2n) coefficient matrix in equation (71)
a reference frame established by .P2 and a\> a2, a3
{a} (3 x 1) vector array with elements a I' a2' a3 the dextral orthogonal unit vectors fixed in a
f!4 (I2n x I2n) coefficient matrix in equation (71)
6 reference frame established by base body
{b} (3 x 1) vector array with elements b l , b2, b3 , the dextral orthogonal unit vectors fixed in b
C (3 x 3) variable direction cosine matrix; {a} = C(b)
C', C (3 x 3) constant direction cosine matrix; Ie'} = C'{a}; and generic C'
CM vehicle mass center
CM' 8th element mass center when appendage in steady state
c, c vector from CM to point 0 and (3 x 1) matrix in basis {a}, respectively
D displacement coefficient matrix in e = Dw [equation (12)]
E Young's modulus
g number of finite elements
~ set of numbers of finite elements in contact with node j
0, i5 contribution to c not attributable to appendage deformation, equation (43), vector and (3 x I)

matrix in basis {a}, respectively
(3 x 1) vector array with elements ej, ei, ej; the dextral orthogonal unit vectors fixed in the 8th
finite element in its steady state; and generic {e'}
(6.1' x 6%) matrix relating y to r, equation (9)
resultant force onjth nodal body vector and (3 x 1) matrix in basis {a}, respectively
force applied by finite element s to nodal body j, vector and (3 x 1) matrix in basis Ie}, respectively
-p,j
resultant for nodal body j of forces external to the system, vector and (3 x I) matrix in basis {a},
respectively
(3 x 1) matrix function of element body forces in basis Ie}

t Investigation supported by NASA Contracts NAS7-IOO and NAS8-262I4.
t Associate Professor, Mechanics and Structures Department; also Consultant to the Jet Propulsion

Laboratory.
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(6n X 6n) gyroscopic coupling matrix in equation (64)
element gyroscopic coupling matrix (6,+" x 6.¥)
angular momentum of nodal body j for its mass center
inertia dyadic of nodal body j for its mass center and (3 x 3) inertia matrix in basis {ni}
element of Ii, Cl, Y = 1,2,3
inertially fixed point
(3 x I) vector array of inertially fixed, dextral, orthogonal, unit vectors ii' i2 , i3
(~ 1)+
(6n x 6n) appendage stiffness matrix [equation (64)J
(6,/1" x 6AI') finite element structural stiffness matrix, for vector bases Ie} and {a}, respectively
(6Ar x 6.A''j stiffness matrix for unloaded element for basis Ie:,
(6. V x 6.,V) preload (geometric) stiffness matrix for element, basis Ie}
(12n x I) matrix in equation (71)
(6n x I) matrix in equation (64)
(6.,1" x I) matrix of forces and torques on the nodes of element s, equation (19), and generic D
(6n x 6n) generalized inertia matrix, equation (64)
constituents of M', equation (65)
vehicle mass; mass of finite element 5

generic (6.V x 6A) consistent mass matrix for finite element, bases Ie} and {a}, respectively,
equations (35), (40)
mass of jth nodal body and mass matrix mi = miU
number of modal coordinates after truncation
number of nodes for finite element 5 and generic .Ai;
number of nodes in appendage
(3 x I) vector array with elements n{, n~, n~, the dextral orthogonal unit vectors fixed in nodal
body j and generic form
point fixed in t, and vehicle CM for steady-state deformation
(3 x 6.-v) matrix relating w to r, equation (5)
(l2n x I) state matrix, equation (71)
point common to a and t
(6n x I) matrix of variational deformation variables, equation (63)
vector from 0 to f2 and (3 x I) matrix in basis {a}
vector from f2 to CM' and (3 x I) matrix in basis {a}, respectively
vector from f2 to steady state nodej and (3 x I) matrix in basis {a}, respectively
(6 x 6) coefficient matrix in stress-strain equation (15)
external torque on nodal body j, vector and (3 x I) matrix in basis {a}, respectively
torque on nodal body j, vector and (3 x 1) matrix in basis {a}, respectively
torque on nodal body j applied by element 5, vector and (3 x I) matrix in basis Ie"~}, respectively
(3 x 3) unit matrix
virtual strain energy
displacement of node j due to variations from steady state deformation (i.e. variational translational
nodal deformation), vector and (3 x I) matrix in basis {a}, respectively
(3 x 6. V) matrix relating w to y, equation (11)
virtual work
displacement of field point of finite element 5 due to variations from steady-state deformation,
(i.e. variational element deformation), vector and (3 x I) matrices in basis Ie'} and {a}, respectively
generic for {o', w' and w'
vector from J to CM and (3 x I) matrix in basis Ii}
(12n x I) transformed state variable matrix, equation (74) and (2A" x I) truncated form
(6A~ x I) matrix of deformational and nodal displacements for finite element 5 and generic form

Greek symbols
iX coefficient of thermal expansion
p~ rotation of nodal body j for axis ao due to variations of deformation from steady state (i.e. variational

rotational nodal deformation) (a = I, 2, 3)
pi, pi p{a1+p~a2+p~a3 and (3 x I) matrix in basis {a}
r (6Ar x l) matrix in equation (5)
Eoy8 epsilon symbol of tensor analysis (value + I, ~ I, or 0)
E.o;. strain element, basis Ie}
ii (6 x I) strain matrix due to variations from steady state deformation, equation (12)
e' steady state strain matrix (6 x I)
ii, (6 x I) strain matrix due to deviations from steady state temperature
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Cartesian coordinates corresponding to e., ez, e3 and origin fixed in element under steady state
deformation
(3 x 3) direction cosine matrix in {b} = 0{i}
(6.% x 6%) centripetal stiffness matrix for finite elements and generic K'
(12n x 12n) diagonal matrix of eigenvalues of B and truncated (2% x 2%) form
mass density of finite element
Poisson's ratio
position vector and (3 x 1) matrix in {e'} basis to field point of element s in steady state from eM';
generic p' and p'
steady state stress (e.g. due to spin)
stress due to deviation from steady state deformation, {e} basis
(6 x 1) stress matrix, equations (16), (17)
(6 x 1) stress matrix accommodating thermal strains
variation from steady state temperature
(12n x 12n) transformation matrix of eigenvectors, equation (74)
(12n x 12n) matrix of adjoint eigenvectors of equation (71), see equation (72)
inertial angular velocity of nodal body j
inertial angular velocity vector of a and (3 x 1) matrix in {a} basis
inertial angular velocity vector of band (3 x 1) matrix in basis {b}
nominal value of wa

, with elements Q[, Q2, Q 3

Operational symbols
( f indicates matrix transposition
( )- or C) indicates formation of (3 x 3) skew symmetric matrix from (3 x 1) matrix, as in equation (30)

f d (V) time derivative of arbitrary vector V in reference frame f
dt
( . ) time derivative of scalar or matrix
( )* virtual quantity (stress, displacement, etc.)
( )-. matrix inverse
~ means equality by definition

Repeated lower case Greek indices indicate summation over range 1,2,3.

INTRODUCTION

A TYPICAL modern spacecraft consists of structural subsystems, some essentially rigid and
others extremely flexible, interconnected often in a time-varying manner, with relative
motions frequently prescribed by nonlinear automatic control systems. Such vehicles may
in whole or in part be spinning, they may be expected to undergo arbitrary large changes in
inertial orientation and they may be subjected to external forces due to environmental
interaction and due to the actuation of attitude control devices. It has become necessary,
largely for the purpose of attitude control system design and analysis, to devise methods
of dynamic analysis which combine the generalities of nonlinearity and unrestricted
motions provided by the representation of the vehicle as a collection of interconnected
discrete rigid bodies [1, 2J with the computational efficiency afforded by the use of modal
coordinates to describe the vehicle normal mode deformations [3,4]. The result is a
procedure which employs discrete coordinates to describe the unrestricted motions of
those structural subsystems idealized as rigid bodies, in combination with distributed or
modal coordinates to describe the time-varying deformations ofthose structural subsystems
idealized as flexible elastic appendages; this method is called the hybrid coordinate approach
to space vehicle dynamic simulation.

Within the framework of the hybrid coordinate methods, three alternative approaches
to the initial mathematical modeling of flexible appendages can be distinguished: (i)
appendages are idealized as collections of small rigid bodies interconnected by massless
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elastic structure [5-7J ;(ii) appendages are treated as elastic continua [8-11J ;(iii) appendages
are modeled as collections of finite elastic elements possessing mass, interconnected at
nodes where mass mayor may not be concentrated. In every case, the formulation of
equations of motion for the appendage deformations is followed by a transformation to
distributed or modal coordinates for the appendages, so that in the final system of equa­
tions of motion the initial mathematical model adopted for the appendages is obscured;
indeed, one can formulate the system equations in terms of appendage modal coordinates
without confronting the question of the origin of these coordinates in the equations of
motion of a particular mathematical model of the appendages [12].

The first of the three approaches to appendage modeling has been developed to the
point of providing information useful for the design of attitude control systems of very
complex modern spacecraft [13-15J and the second approach has proven to have practical
value when the appendages are amenable to idealization as elastic beams [9-11]. It is the
purpose of this paper to provide the equations required by the third approach and to
identify features of these equations which make the resulting finite element formulation
superior in some applications to the two alternatives previously developed, and then to
develop and evaluate procedures for obtaining transformations to modal coordinates.

APPENDAGE IDEALIZATION

Any portion of a vehicle which can reasonably be idealized as linearly elastic and for
which "small" oscillatory deformations may be anticipated (perhaps in combination
with large steady-state deformations) is called a flexible appendage.

A flexible appendage is idealized as a finite collection ofg numbered structural elements,
with element number shaving,Als points of contact in common with neighboring elements
or a supporting rigid body, s = 1, ... ,8. Each contact point is called a node and at each
of the n nodes there may be located the mass center of a rigid body (called a nodal body),
but the elastic structural elements may also have distributed mass. In the final equations,
the element masses can be suppressed to obtain the results of Ref. [7J, or the nodal masses
can be suppressed if the physical system permits such an idealization.

Figure 1 is a schematic representation of an appendage (enclosed by dashed lines)
attached to a rigid body {j of a spacecraft, which may consist of several interconnected
rigid bodies and flexible appendages. A typical four-node element of the appendage is
shown in three configurations ofinterest: (i) prior to structural deformation; (ii) subsequent
to steady-state deformation, induced perhaps by spin; (iii) in an excited state, experiencing
both oscillatory deformations and steady state deformations.

The point fl. of body 6 is selected as an appendage attachment point. The dextral,
orthogonal unit vectors bI , bz, b3 are fixed relative to 6 and the dextral, orthogonal unit
vectors aI' az, a3 are so defined that the flexible appendage undergoes structural deforma­
tions relative to a reference frame a established by point fl. and vectors ai' az, a3. Gross
changes in the relative orientation of a and 6 are permitted, in order to accommodate
scanning antennas and such devices; this is accomplished by introducing the time-varying
direction cosine matrix C relating a" to b" (Cl = 1, 2, 3) by

(1)
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or, in more compact notation, by
{a} = C{b}. (2)

The equations of motion to follow permit arbitrary motion of t: and arbitrary time varia­
tion in C, although practical application of the results requires that the inertial angular
velocity of t: and the angular velocity of a, relative to t: remain in the neighborhood of
constant values over some time interval. These angular velocities will not emerge as solu­
tions of equations to be derived here; the complete dynamic simulation must involve
equations of motion of the total vehicle and each of its subsystems, as well as differential
equations characterizing necessary control laws for automatic control systems, and only
the differential equations of appendage deformation are to be developed here.

As shown in Fig. 1, appendage deformations are described in terms of two increments,
one steady-state and the other oscillatory. This separation is necessary because in formu­
lating the equations of motion for the small oscillatory deformations of primary interest
here one must characterize the elastic properties of the appendage with a stiffness matrix
and the elements of this matrix are influenced by the structural preload associated with
steady-state deformations, as induced for example by spin.

Thejth nodal body experiences due to steady-state structural deformation the transla­
tion uj' = ~'a~ (summation convention) of its mass center and a rotation characterized
by p{, f3{, f3{ for sequential rotations about axes parallel to aI' a2, a3' The steady state
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deformations of a typical element are represented by the function eo', which is related to
the corresponding nodal deformation by the procedures of finite element analysis. The
task of solving for the steady-state deformations of appendages on a vehicle with constant
angular velocity is mathematically identical to a static deflection problem. Because, at
least formally, large deflections and resulting nonlinearities are to be accommodated,
this task is not trivial, but it is in this paper assumed accomplished, so that steady-state
deformations and structural loads associated with nominal vehicle rotation are assumed
known.

Attention is to focus here on the small, time-varying deformations of appendages
induced by transient loads or deviations from nominal vehicle motion. The jth nodal body
experiences the translation uj = u~aa and the rotation ~j = f3~aa (small angle approxima­
tion) in addition to the previously described steady-state deformations. The oscillatory
part of the deformation of a generic element is represented by the vector function eo.

(Should it become necessary to deal with such deformations for more than one element
simultaneously, the notation eo' is employed for element s.) The quantities ui,
~j (j = 1, ... , n) and eo' (s = 1, ... , @) or their scalar components are referred to as varia­
tional deformations.

For convenience in calculations it is often desirable to introduce for each finite element
in its steady-state condition a local coordinate system, by introducing a set of dextral,
orthogonal unit vectors e1 , ez, e3 , an origin fi and a corresponding set of axes ~, 1], (.

(Superscripts are appended to each of these symbols should it become necessary to
distinguish the particular element.) The local vector basis is then related to the appendage
global vector basis a1, az, a3 by.a constant direction cosine matrix C as in

I::! ~{J 0' (eJ ~ Cia).
(3)

The vector function eo is most conveniently expressed in terms of local coordinates and
the local vector basis; the (3 x 1) matrix function to defined by

represents eo in the local basis, whereas the (3 x 1) matrix function w defined by

eo = waaa = {a}Tw

(4)

(5)

represents eo in the global basis. Similar notation distinguishes the vector bases of all
matrices representing Gibbsian vectors.

An important aspect of the appendage idealization is the assumption, to be incorporated
in the following section, that the deformations of each finite element can be represented
as a function only of the deformations of its nodes and that the nature ofthat interpolation
function can be imposed a priori.

FINITE ELEMENT EQUATIONS OF MOTION

Having adopted an appendage idealization, one can proceed formally to derive its
equations of motion. Since it is the variational nodal deformations ui and ~j (j = 1, ... , n)
which represent the appendage unknowns, the equations of motion of the appendage
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ultimately consist of the 6n scalar second order differential equations of motion for the
n nodal bodies. The present section, however, has the intermediate objective of providing
an expression for the interpolation function relating the variational deformation function
w of a finite element to the variational deformations at its nodes, and in terms of this
relationship providing expressions for the forces and torques applied to the nodal bodies
by the adjacent finite elements.

Rather than attempt to work with the infinite number of degrees of freedom of the
element as a continuous system, one can avoid introducing any additional degrees of
freedom attributable to element mass by assigning to U'(~, 1'/, 0 a functional structure
permitting its representation in terms of the 6% scalars defining the translational and
rotational displacements due to oscillatory deformations at its % nodes.t Although
much is left to the discretion of the analyst in choosing an expression for the function
U'(~, 1'/, 0, it is required for present purposes that this expression involve 6% scalars
r 1" .. , r 6%' matching in number the unknown deformational displacements at the vll
nodes of the element. Typically, polynomials in the Cartesian coordinates~, 1'/, (are chosen,
with r 1" •. , r 6% providing the coefficients. In matrix form, the indicated relationship is
written

w =pr (6)

where w is defined by equation (4), r £ [r 1r 2 ••. r 6.¥Y and P is a (3 x 6%) matrix estab­
lishing the assumed structure of the deformational displacement function.

Equation (6) applies throughout a given finite element and hence it applies at the element
nodes; if the jth node of the appendage is a node of the element in question, with local
coordinates ~j' I'/j' (j' the nodal displacement u j as represented by the matrix uj in the local
basis is from equation (6) given by

uj
= w(~j' I'/j, C) = P(~j' I'/j, (j)r

and the rotation ~j is represented in the local basis by the matrix

n° 1-_ 1-
pJ = 2Vwl~j,~j,'j = 2VPk,~j"T

where

(7)

(8)

-O/o(

o
a/a~

Equations (7) and (8), written for each of the % nodes of a given finite element, furnish
6% scalar equations, sufficient to permit solution for r 1, . ° • , r 6% in terms of the 6%
deformations. If the nodal numbers of the element are designated k, i, ... ,j (no sequence
implied) and a (6% x 1) matrix y is introduced to represent in the local basis of the element
all of the deformational displacements of adjacent nodes, one can construct the matrix
equation

y = Fr (9)

t The symbol .;v, represents the number of nodes of element s, but the symbol JV will be used for a generic
element.
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Uk Plk

13k 1VPlk
Ui Pli

- 6 pi ;P~ tVPliy=

pj

where the notation Ij implies evaluation at ~j' 1'Jj, C, etc.
Substituting the inverse of equation (9) into (6) yields

(10)

thus establishing the relationship between nodal deformations and the deformations
distributed throughout the element. The (3 x 6.11") matrix PP-l, which appears frequently
in what follows, is called an interpolation matrix and designated J-v, permitting ii) to be
written

ii) = Wy. (11)

With full knowledge of the variational deformation field ii) throughout the element,
one can obtain an expression for the variational strain field, represented in the local vector
basis by Bay, 0(, Y = 1,2,3. This step requires strain-displacement relationships. When
large displacements are considered, as they must be ifa steady-state strain due to appendage
preload is to be calculated, the nonlinear version of the strain-displacement equations
is approximate. This results in substantial analytical complexity, normally circumvented
by a process of incremental use of strain-displacement equations linearized about different
displacement states. Nonlinearities in the strain-displacement equations are avoided in
the present analytical formulation for the solution for small, variational, time-varying
deformational displacements by linearizing the strain-displacement equations about the
state established by the steady-state preload. Thus the incremental or variational strains
in the element beyond any steady-state strains (which will be called B~y; 0(, Y = 1,2,3) can
always be related to small variations ii) 1, ii)2' ii)3 in displacements with an equation of
the form

(12)
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which becomes

8 = DWy

717

(13)

and when these are small deformational displacements W1' W2, W3 corresponding to
orthogonal axes ~,'7," equation (12) takes the form

811 a/a~ 0 0

822 0 0/0'7 0

833 0 0 a/a( [::} (14)
812 0/0'7 a/a~ 0

f,23 0 a/a( 0/0'7

831 a/a( 0 a/iJ~

In addition to the variational strain matrix 8 above, one may define a steady state
strain matrix t with six elements chosen from 8~i(J(, y = 1,2,3) and also a strain matrix 8,

that would result as a consequence of any deviations from the steady-state thermal con­
dition of the structural appendage. If the deviation from the steady-state temperature at a
given point of the element is designated " the variational thermal strain 8, becomes

8, = iX,[1 1 1 0 0 oy (15)

where the scalar iX is the coefficient of thermal expansion of the element material. When
finite element heat transfer equations are introduced to augment the dynamical equations
sought here, the distribution of temperature ,(~, '7, () in each element would be assumed
to have a simple functional dependence on the nodal temperatures, which become additional
unknowns.

The increment (j in the stress matrix beyond the steady-state value (j' is related for an
elastic material to the difference in the total variational strain and the variational thermal
strain by

(jll (1- v) v v 0 0 0 811 - iX,

(j 22 v (1- v) v 0 0 0 822 -iX,

(j33 E v v (1- v) 0 0 0 £33 -iX,

0"12 (1+v)(I-2v) 0 0 0 (1-2v)/2 0 0 812

(j 23 0 0 0 0 (1- 2v)/2 0 823

(j31 0 0 0 0 0 (1-2v)/2 831

(16)

where E is Young's modulus and v is Poisson's ratio. Symbolically, equation (16) may be
written

(17)
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(18)

The (6 x 6%) matrix SD W is sometimes called the element stress matrix.
Variational stresses and strains are related to nodal variational displacements in

equations (18) and (13), respectively. This information can be used in conjunction with the
work--energy equation and the virtual displacement concept to obtain expressions for
forces and torques that must be applied to the element at the nodes in order to balance the
applied loads while sustaining the inertial accelerations associated with nodal accelerations
by equation (11). Since equal and opposite forces and torques are applied by the elements
to the nodal bodies for which equations of motion are to be written in the next section,
these expressions are the primary immediate objective.

For static equilibrium of a mechanical system the work w* accomplished by external
forces in the course ofa virtual displacement y* equals the energy 0/1* stored as strain energy
in the deforming element; this equality is preserved for nondissipative dynamical systems
in motion if to the external forces one adds the inertial "force", which for a differential
element of volume dv at point p is - AJ.L dv, where A is the inertial acceleration of the point p
and J.L is the mass density at p. In general, then, the external "forces" doing work include
the inertial "forces", the forces and torques applied to the element at its nodes, the body
forces [designated by the matrix function G(~, '1, 0 in the local basis] and the surface
forces. In spacecraft applications it is usually sufficient to eliminate the surface loads
from participation inw* by distributing them to the nodes (as indeed may often be appro­
priate for the body forces).

For the finite element designated s, let the (6.;v, x 1) matrix D be introduced as

FkS

Tks

D~ (19)

FiS

TiS

where Fks and Tks are (3 x 1) matrices in the local (element) vector basis respectively
representing force and torque applied by the kth nodal body to the sth element, and similarly
for all .;v, nodes of the sth finite element. Thus the work "if/* associated with a virtual
displacement of the nodes of a generic element becomes

where If is the (3 x 1) matrix representing A in the local vector basis. With equation (11),
the work expression becomes

(20)
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The incremental strain energy 611* due to the virtual displacement is by virtue of equa­
tions (18), (13) and (11) given by

611* = f e*T(iT+iT')dv = fw*TDT(SDW)I-iTt+iT')dv

= y*T fWTDTSDW dvy- y*T fWTDTiTt dv+ y*T fWTDTiT'dv.

(21)

Equating 611* and 1Y*, dismissing the arbitrary pre-multiplier y* Tand solving for L furnishes

Note that the last term in equation (22) contributes only to the steady-state value of L.
Equation (22) is in useful form only when the inertial acceleration matrix A is written

in terms of the nodal deformation matrix y and those functions which define the arbitrary
motion of the base 6 to which the appendage is attached. This is most readily accomplished
first in terms of the corresponding Gibbsian vector A, which by definition is available
in terms of the symbols of Fig. 1as

(23)

where the pre-superscript i denotes an inertial reference frame for vector differentiation
and the chain of vectors in parentheses is a single vector locating a differential element of
volume in a finite element with respect to an inertially fixed point J. If it should be necessary
to identify the particular finite element to which equation (23) is being applied, the corres­
ponding numerical superscript can be attached to the vectors A, RC' P and eo.

Since a matrix formulation is ultimately required, (3 x 1) matrices are defined for each
of the vectors in equation (23) in terms of the most convenient vector basis. In terms of
the vector arrays {b}, {a} and {e} of equations (2) and (3), and the new array {i} of inertially
fixed unit vectors related to {b} by

{b} = 0{i}

the vectors in equation (23) may be written

(24)

X £ {iVX

c £ {bVc

R £ {aVR

Rc £ {aVRc

p £ {eVp = {aVp

eo £ {eVw = {aVw

(25)

thereby defining X, c, R, RC' p, p, wand w.

The inertial reference frame differentiations in equation (23) are facilitated by the
identity

(26)
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applicable to any vector V and any two references frames f and g, where roIg is the angular
velocity of f relative to g. With repeated use of equation (26), equation (23) takes the form

A = {iVX + {bVc+2ro x {bVc+ro x {bVc+ro x (ro x {bVcHro x {bVR

+ro x (ro x {b}TR)+ro
Q

x {aVRc+ro
Q

x (ro
Q

x {a}TRcHroQx {aVP

+roQ
x (roQ

x {a}Tp)+ {a}Tto + 2roQ
x {a}Tto +roQ

x {a}T£0 +roQ
x (roQ

x {a}T£0)

(27)

where ro and roQ
are the inertial angular velocities of 6 and a, respectively [so that in the

more explicit notation of equation (26) one would have ro ~ robi and roQ
~ roQiJ. Equation (2)

can be used to replace £0 and p in equation (27) by wand p, respectively, and with the
introduction of matrices wand wQ defined by

one finds

ro = {bVw; (28)

(29)

where tilde on a symbol representing a (3 x 1) matrix indicates the corresponding (3 x 3)
skew symmetric matrix, e.g.

[

0 -W3 W
2

]

W ~ W3 0 -WI'

-W2 WI 0

(30)

Equation (22) calls for the vector A in the vector basis {e}, requiring in equation (30)
the substitutions from equations (2), (3) and (24)

{aV = {eVC

{bV = {aVC = {eVCC

{i}T = {bve = {aVCe = {eVcce.

From equations (29) and (31) there follows

(31)

A = {e}TA = {e}T{ccex+CC[c+2wc+(dJ+ww)(c+R)J+C(.0Q+wQ.0Q)(Rc+CTp)

(32)

It should be noted that the quantities wQ
, wand C in equation (32) are related by the

kinematical equations

(33)
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Using equation (11) to remove w from A and then substituting for A from equation (32)
into equation (22), furnishes

L = f WTDTSDWdvy+ f WT{CCeX +CC[c+2wc+(w+ww)(c+R)]

+ c[(wa+waWa)(Rc+CTp)]}j.ldv+f WTWj.ldvY+ f WTC2waCTWj.ldvy (34)

+ f wTC(wa+wawa)CTWj.ldvY- f WT(G-DT(j',)dv+ f WTDT(j" dv.

The integrals providing the (6% x 6%) matrix coefficients of y, y and yare assigned
symbols and labels as follows:

iii A f WTWJl dv, the element consistent mass matrix (35)

g A 2 f WTCwaCTWj.l dv, the element gyroscopic coupling matrix (36)

KA f WTDTSDW dv, the element structural stiffness matrix (37)

K A f WTCwa6JaCTW j.l dv, the element centripetal stiffness matrix (38)

ii A f WTCwaCTWJl dv, the element angular acceleration stiffness matrix. (39)

Note that iii, Kand K are symmetric, while g and ii are skew-symmetric. The bar over
these matrices is a reminder that these matrices are associated with the local vector basis
{e}. When it becomes necessary to consider these matrices as written for the appendage
vector basis {a}, these bars are removed. To obtain m from iii, for example, one may write
a transformation written below in terms of the (3 x 3) submatrices C and 0:

CT 0 0 C 0 0

0 CT 0 C
em] = [iii] (40)

CT 0 C 0

0 0 CT 0 0 C

and similarly for k, K, g and IX. The elements of these matrices, such as mij, etc., have
indices adopting the 6% values associated with the six degrees of freedom of each of the
% nodal bodies attached to the element in question.

It may facilitate interpretation to note that the matrices Cand CT in equations (36H39)
serve merely to transform the matrix lying between them into the local vector basis.

In application to appendages on a spinning base, or to otherwise preloaded structures,
the matrix" is usually considered in the two parts Ko and Kt1 , with elastic stiffness matrix
"0 being the stiffness matrix of the element in its unloaded state and with the geometric
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stiffness matrix or preload stiffness matrix kli accommodating the influence on stiffness
attributed to the preload and often manifested as a consequence of changes in geometry.

Other integrals in equation (34) simplify by the removal of terms from the integrand,
leaving the matrix f W T p. dv. Noting that the deformational displacement of the mass
center of the sth element is given in the local vector basis by lO~ in the equation

JtslO~ = ilOp.dv = f. Wp. dvys

where .As is the total mass of the sth finite element, one can define the (3 x 6~) matrix
W~ as the matrix WS evaluated for the element mass center coordinates ¢~, 11~, G, and
write

(41)

Equation (34) can now be rewritten in terms of the notation of equations (35H39)
and (41), and now because it will soon become necessary to consider more than one finite
element at a time, the superscript s for the sth element will be added where appropriate,
furnishing

D = mSys+gSys+(Kt+K~+Ks+iXsW

+ f. WTC(wa+wawa)CTpp.dv+ f. WTCC[c+2wc+(w+ww)c]p.dv

+.4'tsW~T{cscex +CSC(w +ww)R] +cs(wa+wawa)R~} (42)

Equation (42) is still not in the desired final form for D, because the dependence of
c on yS has not yet been explicitly accommodated (see Fig. 1 to interpret - c = - {bVc
as the displacement of the vehicle mass center CM from its nominal location in 6. at point 0
subsequent to steady-state deformation). The mass center shift - c can be attributed in part
to the shifts of the mass center locations of the finite elements during deformation, in part
to the similar mass center motions ofthe nodal bodies and in part to the behavior of moving
parts other than the elastic appendage under consideration. If the last ofthese contributions
is simply designated - c) and .A represents the total vehicle mass, then by mass center
definition

(43)

for an appendage with n nodes and $ finite elements. Writing both sides of equation (43)
in the same basis {b} and substituting from equation (40) for lo~ yields

(44)



+ iWTC(WO+6Jo6JO)CTpll dv

+AtsW~T{csq0X+(w +6J6J)R] + CS(wo+6Jo6JO)R~}

(49)
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which with equation (41) becomes (abandoning the unit vectors)

c = 15-cTLt1 miui+ J1 crTAtrw~yr] I At. (45)

Now all terms involving c in equation (42) can be removed from the integral over finite
element s. Rather than differentiate c as it appears in equation (45) to obtain c and c,
one can make further use of equation (26) and finally obtain f} from equation (42) in the
form

f} = msys_AtsW~TcST[ £crTAtrw~yr+ .± miii] IAt
r= 1 ,= 1

+ gS? _ 2AtsW~TCST6JO[f crTAtrWJir + .±miui] IAt
r=l ,=1

+(kO+k~+Ks+~SW-AtsW~TCST(WO+6J06JO).Lt1 crTAtrW~Y'+ J1 m,ui]IAt

(46)

-i WT(G-DT(j't)dv+ i WTDT(j"dv

+ At~W~TCSC[b + 26Jb + (w + 6J6J)15].

Equation (46), repeated ~ times for elements s = 1, ... ,~, provides in the matrices
P, , [,,, a representation of the contribution of structural interactions to the forces
F 1, , Fn and the torques T 1

, ... , T" applied to the n nodal bodies. There remains the task
of deriving equations of motion of these nodal bodies.

NODAL BODY EQUATIONS OF MOTION

For the jth nodal body, having mass mj and inertial acceleration Aj, the translational
equation

Fj = mjAj (47)

can be expressed in the desired form by inspection of the results for a generic point of a
finite element. The acceleration Aj is defined in terms of the symbols of Fig. 1 as

. 2

Aj £ ~(X+c+R+rj+uj) (48)
dt2

which can be compared to equation (23) for the element field point. A line of argument
parallel to that providing equation (29) from (23) produces from equation (48) the expression

Aj = {ifX + {bf[c+26Jc+(w+6J6J)(c+R)]

+ {a f[(wO+ 6Jo6JO)(,J + uj)+ 26JOuj+ uj].



724 PETER W. LIKINS

(50)

The matrix c can be substituted from equation (45) and by the argument leading from there
to equation (46) one can develop from equations (47) and (49) (with appropriate change of
vector basis)

Fi = {ayFi = {aVmi{cex +C[c5+2Wb+(dJ+ww)(t5+R)]

+(dJa +wawa)ri+ ili - (t miui + f crTJltrw~yr) I,It
,=1 r=1

+2wa[ui - (.±miui + f crTJltrW~J;r) IA]
,= 1 r= I

+(dJa+wawa{ U
i - (.tl miui+ Jl crTArW~yr) IA]}.

The force Fi applied to the jth nodal body consists of the external force fi = {a}Tfi applied
at that node plus the structural interaction forces Fsi applied to nodej by adjacent structural
elements s. If the symbol LSEG' denotes summation over those values of s belonging to the
set ~i consisting of that subset)of the element numbers 1, ... , ~ corresponding to elements
in contact with node j, then Fi becomes

Fi = fi+ L pi.
seSj

(51)

If Fsi is written in the vector basis {eS
} as

pi ~ {esVpsi = {aVCsTpsi (52)

and the relationship psJ = - pis is accepted as a consequence of Newton's third law,
one can extract from equation (50) the matrix equations

fi- L csTpis = mi{cex +C[c>+2Wb+(dJ+WW)(b+R)]
se8j

+(dJa+wawa)ri+ui - (t miui + f crTA r W~Y') IJt
,=1 r=l

+2W{Ui - ttl miu
i+ Jl crTA r w~vr) IA ]

+(dJa+wawa{ U
i - (.tl miui+ Jl crTA r W~Y') (It]}

j 1, ... ,n. (53)

Here for convenience in future composition of matrix equations the (3 x 3) unit matrix U
has been used to define the mass matrix

(54)

By systematically examining the quantities L defined in equation (19) and appearing
in the ~ matrix equations represented by equation (46), one can extract expressions for
the quantities Fis appearing in equation (53); upon substitution of these expressions one
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has in equation (53) a set of dynamical equations in ui and y, j = 1, ... , n, S = 1, ... , fff.
By the definition found after equation (9), the matrices .v 1

, ..• ,.vI are comprised of the
matrices u1

, ... , un, 1)1, ... ,pn, which transform to ui and pi by ui = eV and pi = Cpi,
i = 1, ... , n. Thus equation (53), with substitutions from equation (46), provides 3n scalar
second order differential equations in the 6n unknowns u~, . .. , u:, p~, ... ,P:, IX = 1,2,3.
Completion of the set requires the equations of rotational motion of the nodal bodies.

The basic equation for the rotation of the jth nodal rigid body is

(55)

where Ti is the applied torque, Hi the angular momentum and 0 i the inertia dyadic of
the nodal body, all referred to the mass center of the body, and over-dot denotes time
differentiation in an inertial frame of reference. The inertial angular velocity roi of the jth
body may be expressed in terms of established notation as

and its inertial derivative is

Wi = wa+{a}Tpi+roax{aVpi = {aV(wa+pi+wapi)

so that equation (55) becomes

Ti = {aVTi = {niV/i{ni }. {aV(wa+pi+wapi)

+ {aV(wa+ Pi) x {niV/i{ni}. {aV(wa+M

(56)

(57)

(58)

where {ni } is the (3 xl) array of dextral, orthogonal, unit vectors n{ , n~, n~, fixed in nodal
body j and coincident with {a} when the appendage is in its steady state (see Fig. 1). The
direction cosine matrix relating {nil and {a} subsequent to small appendage deformation
is given by the relationship

(59)

where U is the (3 x 3) unit matrix and iJi is the skew-symmetric matrix formed ofthe elements
P{ , p~, p~ according to the pattern of equation (30), i.e. iJ~9 £ CaY9P~ where cay9 is the epsilon
symbol of tensor analysis.

Substituting equation (59) into (58) produces a vector equation entirely in the {a} basis,
or equivalently the matrix equation

Ti = /iwa+wa/iwa+/ipi+[wa/i_(Iiwa)- +/iwa]Pi

+ [IidJa _(Iiwa)- +wa/iwa_wa(Iiwa)-]Pi (60)

where second degree terms in the matrix pi and its derivatives have been ignored and the
tilde retains its operational significance [see equation (30)], so that for example (Iiwa);;B £
CaY9/~~W~.

The torque Ti applied to the jth nodal body consists of the external torque ti = {a} T ti
applied at that node plus the structural interaction torques r i applied to nodej by adjacent
structural elements s. Has in equation (51) the set ~ contains the numbers ofthe elements in
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contact with node j, then Ti may be written [in parallel with equations (51), (52)] as

Ti = {aVTi = {aVti + L r i = {aVti - 2: Tis
se8j se8j

The combination of equations (60) and (61) provides

ti - L csT'[is = /iwQ+of/iwQ+/iPi+[wQ/i_(IiwQ)- +/iwQ]Pi
selj

j = 1, ... ,n.

(61)

(62)

The rotational equations (62) stand in parallel with the translational equations (53)
as the basic equations of motion ofthe n nodal bodies of the appendage. Once equations (46)
and (19) have been used to provide expressions for the matrices '[is and pis appearing
respectively in equations (62) and(53), these constitute a complete set ofdynamical equations.

COORDINATE TRANSFORMAnONS

There remains the critical task of packaging equations (53) and (62), with substitutions
from equation (46), in a form convenient for the generation of coordinate transformations.
To this end, let

q ,g, [u}uiu~mPiP~ui ... P3Y (63)

be the (6n x 1) matrix of nodal deformation coordinates and rewrite the 6n second order
differential equations implied by equations (46), (53) and (62) in the form

M'Q+V'4+G'4+K'q+A'q = L' (64)

where M', V' and K' are (6n x 6n) symmetric matrices and where G' and A' are (6n x 6n)
skew-symmetric matrices, with L' a (6n x 1) matrix not involving the deformation variables
in q. Since equations (53), (62) and (46) are all linear in the variables ui, pi and yi contained
within q, and since any square matrix can be written as the sum of symmetric and skew­
symmetric parts, the possibility ofexpression ofthese equations in the form ofequation (64)
is guaranteed by the symmetric character ofthe coefficients of iii, pi and yi in the constituent
equations.

The (6n x 6n) matrix M' can be represented as the sum of three parts, as symbolized by

M',g, M+Mc-M (65)

where M is null except for the (3 x 3) matrices m1, /1, m2
, ••• , r along its principal diagonal,

M C is the consistent mass matrix whose elements M'fi are given in terms of the constituents
of the finite element inertia matrices m in equation (40) by

c
M'fi = L mii

s=1

(66)

and the contribution - M accommodates the reduction of the effective inertia matrix
due to mass center shifts within the vehicle induced by deformation [see for example the
terms -(L7=I miii i + 2::=1 crTAtrW~yr)/At in equation (53)].
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The matrix D' in equation (64) accommodates any viscous damping that may be
introduced to represent energy dissipation due to structural vibrations. As the equations
(62), (53) and (46) have been formulated here, such terms have been omitted, but they can
still be inserted if one accepts the practice common among structural dynamicists of
incorporating the equivalent of a term D'qinto equations of vibration only after derivation
of equations of motion and transformation of coordinates.

Examination of the coefficients of {Ji, iii and 'pi in equations (62), (53) and (46) reveals
that all have coefficients which will appear in the skew-symmetric matrix G' in equation
(64);t since all such terms disappear when of is nominally zero, the matrix G' is said to
provide the gyroscopic coupling of the equations of vibration. Note that the matrices gS
defined generically in equation (37) contribute to G' just as the matrices ins contribute to
M' [see equations (65), (66)].

The terms from equations (62), (53) and (46) contributing to the matrix K' in equation
(64) are basically of three kinds: (i) those represented by kt in equation (46), which reflect
the elastic stiffness of the structure in its unloaded state; (ii) those represented by k'A in
equation (46), which provide the increment to the elastic stiffness of the structure attri­
butable to structural preload; (iii) those represented in equation (46) by i(S and in equations
(46), (53) and (62) by other terms involving base acceleration [such as the centripetal
acceleration term miwQwQin equation (53)]. The elements of the matrices kt, k'A and i(S

contribute to K' in a manner analogous to the contribution of ins to M' [see equations
(65), (66)].

Finally, the matrix A' in equation (64) contains all terms from equations (46), (53) and
(62) involving of, and in addition the coefficient -wQ(IiwQ)- of f3i in equation (62) makes a
contribution to A'. Because certain of the coordinate transformation procedures to be
considered depend upon the absence ofthe matrix A', it is worthwhile to examine the skew­
symmetric part of the matrix -w(IiwQ)- in detail, since when wQhas some nominal constant
value, say Q, and of is nominally zero, this matrix is the sole contributor to A'. In terms of
its symmetric and skew-symmetric parts, this matrix is

The matrix identity

(68)

for any (3x 1) matrices x and y permits the skew-symmetric part of -wQ(Iiwa)- to be
recorded as

(69)

where the final substitution replaces wQ by its nominal value, Q. In terms ofscalars represent­
ing the elements laB of Ii and QB of Q, 0(, e= 1,2,3 the independent nonzero terms of
-t[QliQr are given by

- MQli QJ 12 = - MUll - I 22)Q1Q2+ IdQ~ - QD + I 13Q2Q3- I 23Ql Q3J

-MQli QJ13 = -MUll -133)Q1Q3+1 13(Q~ -QD+l12Q2Q3-132Q1Q2J (70)

t The identity {bali - (Iiwa)- + liwa = (trli)Wa - 2(liwa)- is required in equation (62) to reveal the skew
symmetry of the coefficient of {Y.
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Since such terms as these are the sole contributions to A' when ciJa is nominally zero, it
becomes clear that the special case A' = 0 applies when the base experiences small excursions
about a nonzero constant spin only if the nodal bodies are particles or spheres (or in the
extraordinary case when in the steady state of deformation all nodal bodies have principal
axes of inertia aligned with the nominal value of the angular velocity (Oa).

The objective of this section is to find a coordinate transformation which will permit the
replacement of the homogeneous form of equation (64) with a set of completely uncoupled
differential equations. Although the conceptual, analytical and computational difficulties
encountered in meeting this objective in general terms are greatly diminished in special
cases ofpractical interest, consideration will be given here only to the most general tractable
case of equation (64) and to a special case of equation (64) for which A' = D' = O.

Inspection of equations (62), (53) and (46) reveals that the coefficients of q and q in
equation (64) depend upon wa

, which characterizes the rotational motion of the appendage
base. For the problems of interest, wa is an unknown function of time, to be determined
only after the appendage equations (64) are augmented by other equations ofdynamics and
control for the total vehicle and solved. Only if w a can be assumed to experience, in a
given time interval, small excursions about a constant nominal value (say n) is there any
possibility of obtaining from equation (64) a transformation to uncoupled equations.
Any methods involving modal coordinates (see Introduction) are dependent upon this
assumption, adopted henceforth. With this restriction, the coefficient matrices of q, q and
ij in equation (64) are constants, since products of small quantities are to be ignored.

If all of the matrices A', K', G', D' and M' in equation (64) are constant but nonzero,
there exists no transformation ofthe form q = cPt"f, with t"f a (6n xl) matrix ofnew coordinates,
which can be used to obtain from equation (64) a second order differential equation in t"f with
diagonal coefficient matrices. In order to transform equation (64) to a set of uncoupled
equations it is first necessary to rewrite equation (64) in first order form, such as

(71)

where

Q ~ [-:-];

d = [~:-t:1: ;---:,---];
!e ~ [z,]

<l [ 0 : -K'-A']f!4 = ------------ ------------ .
K'+A' : D'+G'

Now let 11' be a (12n x 12n) matrix of (complex) eigenvectors of the differential operator
in equation (71) and let 11" be a (12n x 12n) matrix of (complex) eigenvectors of the homo­
geneous adjoint equation

(72)

so that 11' and 11" are related by [16J

(73)
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with I a (l2n x 12n) diagonal matrix which depends upon the normalization of ll> and ll>'.
Substitution into equation (64) of the transformation

Q = ll>Y

and pre-multiplication by ll>,T furnishes

(ll>'Tdll»Y+(ll>'Tg,Jll»Y = ll>,T2.

(74)

(75)

The two coefficient matrices enclosed in parentheses are diagonal [as is evident from
equation (73) when d = U, which by virtue of the nonsingularity of d can be assumed
for this proof without loss of generality]. If A is the (12n x 12n) matrix of the (complex)
eigenvalues of the differential operator in equation (71) [or equation (72), which has the
same eigenvalues], then upon pre-multiplication by (ll>,Tdll»-l one obtains

Y = AY+ (ll>,Tdll»-lll>'T2 (76)

which is in a form convenient for computation. [Note that the matrix inversion in equation
(76) consists simply of calculating the reciprocals of the diagonal elements of ll>'Tdll>.]
In practice, one may expect that physical interpretation of the new (complex) state variables
Y1 , • •• , Y12n (see Ref. [7]) will permit truncation to a reduced set of variables contained in a
new (2N x 1) matrix rand with corresponding truncation of A to the (2N x 2N) matrix A
and truncation ofll> and ll>' to the (12N x 2N) matrices <1> and <1>/, one can reduce equation (76)
to

(77)

Equation (77) may be used in conjunction with vehicle equations of motion to simulate
system behavior.

In the special case for which A' = D' = 0, the matrices d and !1# in equation (71)
are respectively symmetric and skew symmetric, so that equation (72) beomes

dQ' -!1#Q' = 0 (78)

and the adjoint eigenvector matrix ll> is available immediately as the complex conjugatet
of ll>. After truncation this result can be substituted into equation (77), so that in this special
case the final equations are obtained without the requirement of actually computing the
eigenvectors in ll>'. Although transformations other than equation (74) can also be applied
in this special case with A' = D' = 0 (see [7, pp. 47 ff.]), the advantage would appear to be
with equation (74). Transformations superior to equation (74) are well known to exist
when A' = G/ = 0 (see [17 or 7, pp. 47 ff.]) and particularly so when D' is a polynomial in
M' and K' [18].

PERSPECTIVE

The end result of this paper is a system of differential equations [equation (64), or its
constituent parts, equations (62), (53) and (46)], which characterize the vibratory deforma­
tions of a flexible structure attached to a rotating base, together with the transformed and
truncated modal equations suitable for simulation [equations (77)]. Even after transforma-

t This observation is a contribution of Mr. A. S. Hopkins of UCLA and McDonnell-Douglas Corporation.
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tion these equations are an incomplete set, requiring augmentation by additional dynamical,
kinematical and control law equations in the case of spacecraft application.

References [6, 7J treat the total question of the hybrid coordinate approach to the
simulation of spacecraft with elastic appendages and in Refs. [13-15J the practical utility
of this method in application to spacecraft of realistic complexity is demonstrated. This
method requires as input a system of appendage equations with an appropriate trans­
formation to modal coordinates. It is the purpose of the present paper to provide that
input, for a mathematical model of a flexible appendage more general than any heretofore
considered~namely a finite element, distributed mass model. This representation of a
flexible appendage is shown to possess an important new advantage over the nodal body
approach, in addition to those previously noted [19J, in that for a vehicle with constant
nominal spin the matrix A' in equation (64) disappears for the finite element model and
survives for an arbitrary collection of nodal bodies. Since the elimination of A' is an
important step in reducing equation (64) to one of several forms admitting more convenient
modal coordinate transformation than is possible in the general case, this is a potentially
important advantage for distributed mass, finite element analysis.
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A6cTpaKT-YBenH'IeBalOlllallcll o6111all npaKTHKa l1t\eanH3al.\HI1 KOCMI1'1eCKOrO Kopa6nll, B CMblcne
cOBoKynHocTH coet\HHeHHbiX CC060H )I{eCTKHX Ten, npH'IeM K HeKOTopblM 113 HHX npl1KperrneHHble nl1HeHHO
ynpyrHe, rH6Kl1e, t\o6aBO'lHble rrpHcrroco6neHHlI, npHBOt\HT K ypaBHeHl1l1M t\Bl1lKeHl1l1, Bblpa)l{alOlllHXCli B
BHt\e KOM6HHal.\HH t\HCKpeTHbIX Koopt\HHaT, onHCbIBalOlllHX np0l13BOnbHble, BpalllaTenbHble t\BH)I{eHl1l1
)I{eCTKHX Ten 11 pacrrpet\eneHHbIX I1nH MOt\aJlbHbIX Koopt\HHaT, KOTopble Onl1CbIBalOT Manble, 3aBI1ClIlllHe
OT BpeMeHI1 t\ecjJopMal.\l1l1 t\o6aBO'lHbIX npl1cnOC06neHI1H. TaKall cjJopMynl1poBKa I1cnonb3yeT cMernaHylO
CI1CTeMY Koopt\HHaT. B rrpet\naraeMOH pa60Te paCWl1paeTCli CYllleCTBYlOlllali nl1TepaTypa, C l.\enblO y'leTa
ypaBHeHI1H t\BI1)1{eHl1l1 B CMewaHblX Koopt\HHaTax t\nll MOt\enH KOHe'lHOrO :meMeHTa rH6Koro t\o6aBO'IHOrO
npHcnoco6neHl111, np"Coet\IHeHHOro K lKeCTKOH 6a3e, KOTopall nOt\BepraeTClI HeOrpaHH'IeHHbIM t\BI1)1{eHHlIM.
0PHBOt\lITCli HeKOTopble rrpeHMYllleCTBa not\xot\a MeTOt\OM KOHe'lHoro 3neMeHTa. )J.alOTCli npeo6pa30­
BaHHlI t\nll CMelllaHblX Koopt\I1HaT, yt\o6Hble t\nll 06111ero cny'lall.


